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Abstract
Marketing research relies on individual-level estimates to understand the rich heterogeneity of consumers, firms, and products.
While much of the literature focuses on capturing static cross-sectional heterogeneity, little research has been done on modeling
dynamic heterogeneity, or the heterogeneous evolution of individual-level model parameters. In this work, the authors propose a
novel framework for capturing the dynamics of heterogeneity, using individual-level, latent, Bayesian nonparametric Gaussian
processes. Similar to standard heterogeneity specifications, this Gaussian process dynamic heterogeneity (GPDH) specification
models individual-level parameters as flexible variations around population-level trends, allowing for sharing of statistical infor-
mation both across individuals and within individuals over time. This hierarchical structure provides precise individual-level
insights regarding parameter dynamics. The authors show that GPDH nests existing heterogeneity specifications and that not
flexibly capturing individual-level dynamics may result in biased parameter estimates. Substantively, they apply GPDH to
understand preference dynamics and to model the evolution of online reviews. Across both applications, they find robust evi-
dence of dynamic heterogeneity and illustrate GPDH’s rich managerial insights, with implications for targeting, pricing, and market
structure analysis.
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The modeling of dynamic phenomena is central to marketing

research. Marketers are interested in understanding the evolu-

tion of consumer perceptions, preferences, and response sensi-

tivities, as well as the success and failure of different brands

over time. Marketing decisions that focus on temporal conse-

quences of marketing actions necessarily rely on empirical

models of such marketing dynamics (Naik 2015; Pauwels and

Hanssens 2007; Xie et al. 1997). Often, these dynamics are

heterogeneous across individual units. We use the term

“individuals” to broadly refer to units over which the heteroge-

neity is defined, examples of which include consumers, brands,

and products. For example, the pattern of evolution of prefer-

ences could vary across customers because of how they are

differentially affected by economic conditions such as reces-

sions. Similarly, how market perceptions evolve could vary

across brands because of competitive activity. In such situations,

the interest is in the market-level evolution of preferences, as

well as in the individual-level trajectories that may differ from

each other and from how the market is evolving on average.

In this article, we develop a modeling framework for repre-

senting such dynamic heterogeneity. Dynamic heterogeneity

characterizes situations where individual-level model para-

meters evolve over time according to a stochastic process.

More specifically, we allow individual-level parameters to

evolve flexibly in a fashion that does not force them to exactly

mimic the dynamic evolution of the population mean. We do

this by allowing the individual deviations from the population

means to vary over time. At a given point in time, the collection

of individual-level parameters forms a distribution of cross-

sectional heterogeneity. The evolution of these individual-

level parameters therefore results in a time-varying population

distribution, in which the relative positions of individuals

change over time. We illustrate the concept of dynamic hetero-

geneity in the top row of Figure 1.

While marketing researchers have modeled many different

forms of heterogeneity (DeSarbo et al. 1997), most of the
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literature focuses on the variation in preferences across indi-

viduals. Variation within individuals over time has been rela-

tively understudied. Modeling this within-individual variation

has important managerial implications for understanding

changes in markets over time, and for developing dynamic

segmentation and targeting strategies. In addition, just as ignor-

ing cross-sectional heterogeneity can induce estimation bias,

not accounting for parameter evolution can also distort infer-

ences about elasticities or response sensitivities and misinform

managerial actions.

Several marketing studies have used models that include

time-varying individual parameters. Examples include Kim,

Menzefricke, and Feinberg (2005), Liechty, Fong, and

DeSarbo (2005), Sriram, Chintagunta, and Neelamegham

(2006), Lachaab et al. (2006), and Guhl et al. (2018). These

studies have used different specifications to capture the evolu-

tion of parameters. Kim, Menzefricke, and Feinberg (2005), for

example, use a vector autoregressive model to represent the

evolution of the population mean, while Sriram, Chintagunta,

and Neelamegham (2006) employ a dynamic linear model, and

Guhl et al. (2018) rely on penalized splines. Crucially, while all

these works use a dynamic model to capture how parameters

evolve on average, each imposes a static heterogeneity

assumption: conditional on a time-varying mean model mðtÞ,
the individual-level parameter at time t for individual i is given

by bit ¼ mðtÞ þ yi, where yi is a time-invariant offset for the

individual. Such a fixed-offsets (FO) specification is restric-

tive: while it allows the population mean to change according

to a model, the individual-level parameters are forced to main-

tain a fixed distance yi from that mean at any instant. Even

though this results in time-varying individual-level parameters,

their dynamic patterns exactly mimic the overall population

dynamics, resulting in static heterogeneity. This fails to reflect

the full richness of individual-level dynamics, as illustrated in

the bottom row of Figure 1.

We propose a new methodological framework for modeling

dynamic heterogeneity in hierarchical models. Drawing on the

literature on Bayesian nonparametric models in statistics and

machine learning (Rasmussen and Williams 2005), we develop

a novel Gaussian process dynamic heterogeneity (GPDH) spe-

cification that characterizes heterogeneity over time-varying

latent variables using individual-level random functions of

time. These functions are estimated using Gaussian processes

(GPs) that are centered around a common mean model. This

model captures population-level dynamics and is itself inferred

from the data. The GPDH specification is a dynamic analog to

static random coefficient specifications, where the mean model

plays the role of the population trend and the individual-level

functions capture time-varying heterogeneity around this trend.

Similar to traditional heterogeneity specifications, our pro-

posed dynamic heterogeneity specification allows for (1) the

sharing of statistical information across individuals by shrink-

ing their trajectories toward a common mean trajectory, (2) the

sharing of statistical information within individuals across time

periods (i.e., intra-individual smoothing), (3) flexible intertem-

poral evolution, and (4) a principled probabilistic mechanism

for projecting the evolution of individual and mean trajectories

into other time periods. An important feature of our GPDH

specification is that it can be used with any mean model, allow-

ing the researcher to incorporate prior expectations, theory, or
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Figure 1. A synthetic example of dynamic heterogeneity.
Notes: This figure contrasts, in the top row, price sensitivities of individuals evolving dynamically relative to the population mean (black) and, in the bottom row, the
same individuals modeled under the FO assumptions. In the leftmost plot of each row, all the individuals are plotted together, while in the remaining plots of the
top row, some interesting dynamic heterogeneity patterns are visible. Comparing the top and bottom sets, we see that the FO assumption ignores interesting
individual-level dynamics that may be useful for making individual-level targeting decisions and for characterizing changes in preferences over time.
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even specific drivers of dynamics. Our use of GPs to nonpar-

ametrically represent individual-level latent functions that are

shrunk toward a common dynamic population model is a novel

contribution to the econometric, marketing, and machine learn-

ing literatures.

Capturing dynamic heterogeneity yields many benefits. It

can generate insights about patterns of individual-level evolu-

tion. For example, as we show in our two applications, identi-

fying individuals whose parameters shifted from one extreme

of the population to the other, or who moved from being in the

extremes of the distribution to the center or vice versa, can

enhance managerial and substantive understanding, and man-

agers can leverage this insight for targeted marketing. How-

ever, the importance of capturing dynamic heterogeneity goes

beyond such individual-level insights. Statistically, if dynamic

heterogeneity is present but static heterogeneity is assumed, as

is commonly done, we could obtain misleading estimates about

both the population-level mean and the extent of heterogeneity,

both of which can negatively affect targeting decisions. This

can be true even if the correct functional form for the popula-

tion mean model is used, as we illustrate through simulations.

In this article, we present two applications of GP dynamic

heterogeneity. The first and most extensive is in a choice-

modeling context, similar to our motivating examples, where

GPDH is used to represent time-varying consumer preferences

for consumer packaged goods (CPGs), over a span of time that

includes the Great Recession. Using both simulated and real

purchasing data, we show that GPDH yields more accurate and

statistically efficient population and individual-level estimates

of preference evolution. On data from six CPG categories,

GPDH outperforms static heterogeneity specifications in both

fit and forecasting tasks, across a wide array of performance

metrics. At the same time, GPDH also uncovers individual-

level patterns that can be used to characterize and target cus-

tomers and to study individual-level responses to economic

shocks. More specifically, we find both simulated and empiri-

cal evidence of an attenuation bias in estimating population-

level parameters when assuming static instead of dynamic

heterogeneity around a dynamic mean model. Moreover, we

find that, across all categories, estimated individual-level elas-

ticities are notably higher when estimated with dynamic versus

static heterogeneity. These biases, and the ability to predict

individual-level dynamics, can directly affect category manag-

ers’ decision making. Finally, the individual-level dynamics

uncover cross-category differences in response to the reces-

sion: while there are obvious aggregate-level changes in price

sensitivity in many categories, GPDH also uncovers category-

level differences in the degree of individual-level response to

the Great Recession.

Apart from the modeling of preferences, our specification

can be adapted to multiple settings. In our second application,

we focus on an entirely different substantive context: the mod-

eling of product reviews. We develop a novel, GPDH-based

dynamic topic model to summarize relevant topics that are

discussed in customer reviews for different brands of tablet

computers. Particularly, our GPDH topic model captures how

the content of reviews for individual products evolves relative

to aggregate patterns. Empirically, we show how these product-

level topic trajectories give insights about the dynamics of

market structure in the tablet computer market. Such a granular

set of results is not obtainable via aggregate models of market

dynamics.

The rest of the article is structured as follows: We first give

an overview of the needed methodological background before

introducing our GPDH framework. We then discuss our two

applications: choice modeling and topic modeling. Finally, we

highlight other GPDH applications, describe limitations of the

paper, and suggest future research directions.

Methodological Background

Literature

Gaussian processes are Bayesian nonparametric models that

are popular in statistics and computer science (O’Hagan and

Kingman 1978; Rasmussen and Williams 2005; Williams and

Barber 1998) for flexibly modeling temporal and spatial phe-

nomena. Marketing researchers have used Bayesian nonpara-

metrics to represent heterogeneity in static model parameters

via Dirichlet process priors (Ansari and Iyengar 2006; Ansari

and Mela 2003; Braun and Bonfrer 2011; Braun et al. 2006;

Kim, Menzefricke, and Feinberg 2004; Li and Ansari 2014).

While Dirichlet processes are most commonly used to model

uncertainty over probability distributions, GPs are most com-

monly used to model uncertainty over spaces of continuous

functions.1

Dew and Ansari (2018) used GPs in a marketing application

to decompose variation in purchase rates in a dynamic cus-

tomer base analysis setting. In their application, GPs were used

to represent a mean model of spending rates, but individual-

level variation around that mean model was still assumed to be

static. Gaussian processes are also related to kriging methods

used in Bronnenberg and Sismeiro (2002) for predicting

demand across markets. In the context of choice models, Gir-

olami and Rogers (2006) use GPs to model the utility functions

of multinomial probit models in a nondynamic and nonheter-

ogeneous context. Finally, our work is also closely related to

the marketing literature that models individual-level dynamics

(Ansari and Iyengar 2006; Guhl et al. 2018; Khan, Lewis, and

Singh 2009; Lachaab et al. 2006; Liechty, Fong, and DeSarbo

2005; Sriram, Chintagunta, and Neelamegham 2006) via FO

specifications. In this article, we show how GPDH offers a

more flexible and precise alternative than those restricted forms

of heterogeneity. Next, we briefly describe GPs.2

1 In some applications, these distinctions are fuzzy: for instance, GPs can also

be used to model the density function of a distribution, as in Adams, Lain, and

David (2009), while DPs can also be used to specify mixing distributions over

functions, leading to flexible function approximations, as in Kottas (2006).
2 We refer the reader to Rasmussen and Williams (2005) for a comprehensive

treatment and to Dew and Ansari (2018) for an extensive overview in a

marketing context.
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Gaussian Processes

A GP is a stochastic process fðÞ defined over some input

space, which, in the present work, we take to be time,

t 2 Rþ. GPs are defined by a mean function, mðtÞ, and a

covariance function or kernel, kðt; t0 Þ, over input pairs ðt; t0 Þ
such that mðtÞ ¼ E½fðtÞ� and kðt; t0 Þ ¼ CovðfðtÞ; fðt0 ÞÞ. If

f*GP

�
mð tÞ; kð t; t 0Þ

�
, then for any finite set of inputs,

t ¼ ðt1; . . . ; tTÞ, the collection of corresponding function val-

ues (outputs) over these inputs has a joint multivariate Gaus-

sian distribution,

fðtÞ ¼ ½fðt1Þ; :::; fðtTÞ�*N

�
mðtÞ;KðtÞ

�
; ð1Þ

where mðtÞ ¼
�

mðt1Þ; . . . ;mðtTÞ
�

is the mean vector of the

multivariate normal and K is the T� T covariance matrix with

entries given by Kij ¼ kðti; tjÞ. In this way, GPs specify a Gaus-

sian distribution over outputs for any given set of inputs and

therefore provide a natural mechanism for specifying uncer-

tainty over a function space.

The mean and the kernel determine the nature of the func-

tions that a GP prior generates. Informally, the mean function

encodes the expected location of the functions, whereas the

kernel encodes function properties, such as smoothness,

amplitude, and differentiability. Much of the GP literature

assumes a constant mean function to reflect a lack of prior

knowledge about the shapes of the unknown functions, and

the kernel serves as the main source of model specification.

Many different kernels have been proposed in the GP litera-

ture. In theory, the kernel can be any function k : R2 ! R
such that KðtÞ remains positive semidefinite. Kernels are

specified via hyperparameters that control the traits of the

functions that a GP prior generates. Estimation yields hyper-

parameters as well as function values corresponding to par-

ticular inputs. These are used to predict the function values for

a new set of inputs, based on the conditional distribution of

the multivariate normal. In practice, stationary kernels, such

as the Matérn kernel that we use in this article, are most

commonly used. We describe this kernel’s properties in more

detail in the next section.

Gaussian Process Dynamic Heterogeneity

We now introduce our GPDH specification in the context of a

general hierarchical nonlinear modeling framework specified

in multiple stages. The first stage models the individual-level

data in terms of individual-specific latent functions of time, the

second stage specifies how these latent functions vary across

individuals according to a GP that is characterized by a mean

model and a covariance kernel, and the third stage specifies

priors over any invariant parameters in the individual-level

model and the hyperparameters for the mean model and the

heterogeneity specification.

Stage 1: Individual-Level Model

Suppose that the data yit for individual i at time t, observation

m, comes from yitm*pð bit; yÞ; where the individual-level

parameters bit ¼ ð bi1t; bi2t; . . . ; biPtÞ are time-varying, and

the parameters in y are invariant, both across individuals and

over time. The exact functional form and the distributional

assumptions used in specifying pð�Þ can differ across applica-

tions. For example, pð�Þ is a multinomial logit model in our

Application 1, in which case bit contains brand intercepts and

response coefficients. In Application 2, pð�Þ represents a topic

model, where bit captures online chatter about a particular

topic for a brand i at time t.

Stage 2: Heterogeneity Specification

The key conceptual innovation of our framework is considering

the time-varying individual-level parameters, bipt, as functions

of time, bipðtÞ. We can then use GPs to specify a distribution

over the space of individual-level functions, such that for each

dynamic parameter p ¼ 1; . . . ; P,

bipðtÞ*GP

�
mpðt;apÞ; kðt; t 0;fpÞ

�
: ð2Þ

The mean function of this GP is a dynamic population

model mpðt; apÞ that specifies how the individual-level func-

tions evolve on average, conditional on parameters ap. The

individual-level functions are centered around this population

model and are shrunk toward it in a Bayesian fashion. The

properties of the individual-level departures from this mean

model determine the properties of the dynamic heterogeneity

and are governed by the hyperparameters of the kernel, fp.

These parameters control both the magnitude of interindividual

heterogeneity (i.e., the degree of interindividual shrinkage),

and the degree of intra-individual temporal pooling (or smooth-

ing). Next, we describe these GP components in more detail.

Mean model. The focus of this work is on capturing dynamic

heterogeneity around a focal model, and we thus assume that

the researcher has a specific mean model in mind. The market-

ing literature on dynamic modeling includes several examples,

such as state space models (e.g., dynamic linear models that are

typically estimated via the Kalman filter in simpler settings),

traditional time series models such as autoregressive moving

average (ARMA; Box et al. 2015), and parametric models

capturing a specific dynamic phenomenon, as in latent force

models within the machine learning literature (Alvarez, David,

and Neil 2013) or models of advertising dynamics in marketing

(Naik, Mantrala, and Sawyer 1998). The mean model could

also be another GP. We use different examples in our applica-

tions. Which specification is appropriate depends on the mod-

eling context. Again, our goal is not to compare mean models

but to illustrate their use in understanding dynamic heteroge-

neity. Provided that an appropriate (or sufficiently flexible)

mean model is used, we have found that the bigger gain in
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performance comes from using dynamic versus static hetero-

geneity, rather than the choice of mean model.

Kernel choice. The kernel captures the properties of the dynamic

heterogeneity. In this work, we use the rich class of Matérn

kernels, which has a general form given by

kðt; t 0;Z; k; nÞ ¼ Z2 21�n

GðnÞ ðk jt� t 0jÞn Knðk jt� t 0jÞ; ð3Þ

where Z>0, k>0, and n>0 are the kernel hyperparameters that

govern the characteristics of the function draws, Gð�Þ is the

gamma function, and Knð�Þ is the modified Bessel function of

the second kind. Although the functional form of the kernel is

nonintuitive, its hyperparameters have straightforward mean-

ings: the amplitude Z controls the variability of the individual

function draws around the mean function, while k, the inverse

length-scale, determines the smoothness of those function

draws.3 The degree n also determines the smoothness of the

functions by determining their level of differentiability, as

draws from a GP with a Matérn kernel are dn� 1e times dif-

ferentiable, where d�e is the ceiling function. Thus, the ampli-

tude Z determines the magnitude of dynamic heterogeneity, as

it reflects how far the individual-level curves can be from the

mean curve, whereas k captures the degree of intra-individual

pooling across time.

Previous work has shown that the Matérn kernel hyperpara-

meters cannot all be consistently estimated, and, in particular, n
cannot be separately identified from k (Kaufman and Shaby

2013; Zhang 2004). Hence, n is typically fixed to a value that

reflects the supposed smoothness of the underlying process.

Moreover, when the degree is fixed to a half integer

(n ¼ nþ 1=2; n 2 N), the complicated functional form in

Equation 3 simplifies to a product of a dn� 1e degree poly-

nomial and an exponential. For example, when n ¼ 3=2, the

kernel simplifies to

kðt; t 0;Z; kÞ ¼ Z2ð1þ k jt� t 0jÞexpð�k jt� t 0jÞ: ð4Þ

Fixing n to a half integer thus makes kernel estimation more

tractable. This is especially important when inference methods

rely on gradients that involve the kernel function, as derivatives

of the Bessel function can be computationally intensive.

Furthermore, when the degree n!1, the kernel converges

to the squared exponential kernel that is used in Dew and

Ansari (2018). Consistent with the literature (Rasmussen and

Williams 2005), we limit ourselves to the Matérn kernel with

n ¼ 1=2; 3=2; 5=2, and 1 (i.e., the squared exponential

kernel).4

We use the Matérn kernel class in this work for several

reasons. First, it is easier to control the smoothness of the

function draws from this kernel such that momentary temporal

fluctuations can be captured while still representing the under-

lying smoothness of the process. This is especially suitable for

the preference data in Application 1. Second, this class nests

the squared exponential kernel—the typical workhorse of the

GP literature and used by Dew and Ansari (2018)—as a limit-

ing case. Third, as we describe in the next section, the GPDH

specification with the Matérn kernel nests more common het-

erogeneity specifications as special cases. Finally, Matérn ker-

nels allow the use of complexity-penalizing priors, which

facilitates fully Bayesian inference in a principled manner.

Link with static heterogeneity specifications. With this kernel

specification, GPDH nests the static (FO) heterogeneity

specification as a special case. Mathematically, the FO model

assumes bit ¼ mt þ yi ; yi*Nð0;s2Þ. For a fixed set of time

periods, t ¼ 1; . . . ;T, this is equivalent to assuming

ð bi1; . . . ; biTÞ*N

�
ðm1; . . . ; mTÞ;s211 0

�
, where 1 is a T vec-

tor of ones. That is, assuming static heterogeneity around a

dynamic mean model is equivalent to assuming that the full

vector of parameters, ð bi1; . . . ; biTÞ, has a multivariate normal

distribution with a rank one covariance matrix, where each

entry is given by s2. It can be shown that as k! 0, the

Matérn-3/2 kernel given in Equation 4 degenerates to

kðt; t 0;ZÞ ¼ Z2, yielding a rank one covariance matrix, which

is equivalent to the FO case. In other words, as k! 0, GPDH

converges to FO heterogeneity. This relationship holds for any

member of the Matérn family of kernels. We demonstrate this

convergence in Figure 2. This relationship also explains why

we use the inverse length-scale parametrization, as this para-

metrization allows us to place a sizable prior mass on models

converging to the FO model and thus allows us to add a prior

tendency toward that restricted model. Therefore, if the poster-

ior places a sizable mass away from zero, we can be confident

that the data rejects the FO restriction. Moreover, we can use

the magnitude of k as a proxy for the extent to which individ-

uals typically vary over time, relative to a static heterogeneity

assumption.

Stage 3: Hyperpriors

We employ a fully Bayesian strategy for estimating the GPDH

hyperparameters. In particular, we leverage the penalized com-

plexity (PC) prior for Matérn Gaussian random fields intro-

duced by Fuglstad et al. (2018). The PC prior is a weakly

informative prior, based on the idea of penalizing the complex-

ity induced by the kernel hyperparameters in the resultant GP.

3 A more typical form of the Matérn kernel is

kðt; t 0;Z ; r ¼ 1=k; nÞ ¼ Z2 21�nGðnÞ�1
� ffiffiffiffiffi

8n
p

jt� t 0j=r
�n

Knð
ffiffiffiffiffi
8n
p

jt� t 0j=rÞ:
We use an inverse length-scale, slightly rescaled parametrization, such that

our parameter, k, is defined as k ¼
ffiffiffiffiffi
8n
p

=r. This follows the discussion by

Fuglstad et al. (2018). Using an inverse length-scale allows us to nest the FO

model as a special case and is amenable to our choice of prior for the

hyperparameters. The rescaling also helps with the interpretability of the

prior.

4 For more detailed discussion of the degree parameter, and the restriction to

these four values, see Rasmussen and Williams (2005, pp. 84–85).

Dew et al. 59



Complexity in classical GP models refers to functions with

high amplitude (large Z) and small length-scale (small r,

equivalent to large inverse length-scale, k). In GPDH, these

hyperparameters have distinct meanings: the individual-level

amplitude governs the degree of inter-individual shrinkage,

while the inverse length-scale captures the degree of

individual-level dynamics. Thus, by penalizing high ampli-

tudes and high inverse length-scales, the PC prior encourages

shrinkage across individuals, and places substantial prior mass

on the nested FO model. The density of the PC prior is

pðZ ; kÞ ¼ 1

2
l1l2k�1=2expð�l1

ffiffiffi
k
p
� l2ZÞ;

l1 ¼ �logar

ffiffiffiffiffiffiffiffiffi
r0ffiffiffiffiffi
8n
p

r
; l2 ¼

logaZ
Z0

:

ð5Þ

Despite the nonintuitive functional form, another advantage

of this prior is that the parameters Z0, r0, aZ, and ar can be set

in an intuitive way to take into account expectations regarding

the magnitude of heterogeneity and the degree of intertemporal

information sharing. Specifically, as derived in Fuglstad et al.

(2018), this prior yields the following tail probabilities for Z
and r ¼

ffiffiffiffiffi
8n
p

=k:

PðZ>Z0Þ ¼ aZ; Pðr<r0Þ ¼ ar: ð6Þ

In our work, we fix Z0 ¼ 5, aZ ¼ :01, reflecting a diffuse

prior assumption that the magnitude of heterogeneity will not

be too large, and r0 ¼ 1, ar ¼ :001, reflecting a prior assump-

tion that the length-scale will not fall below one.5

Estimation

Given the generality of our framework, the details of the esti-

mation procedure for a hierarchical model that uses GP

dynamic heterogeneity depend on the specific individual-

level model used in the first stage. We discuss our application-

specific strategies in the following sections. As a general point,

several different inferential strategies have been proposed in the

GP literature. These include the use of Laplace approximations,

variational Bayesian methods, and expectation propagation

methods (Girolami and Rogers 2006; Rasmussen and Williams

2005). Often, approximate inference techniques are used with

GPs to overcome the computational complexity in estimating the

function values and the hyperparameters of a GP when T,

the number of time periods, is large. In our applications, as the

number of time periods is not large, we use Markov chain Monte

Carlo (MCMC) methods for exact inference. Filippone, Zhong,

and Girolami (2013) and Filippone and Girolami (2014) perform

a comparative evaluation of different MCMC estimation strate-

gies for GP models. In particular, we use the no-U-turn sampler

(NUTS) variant of Hamiltonian Monte Carlo (HMC; Hoffman

and Gelman 2014). We have found in our GPDH applications

that it is important to jointly sample both the function values and

the hyperparameters in one go, as the strong dependency

between these sets of parameters makes HMC-within-Gibbs

strategies slow to converge.

Distinctions from Previous Work

We reiterate two important features of our approach that make

it distinct from previous work. The first is that in our specifica-

tion, the GPs are used to estimate individual-level functions,

which is distinct from using GPs to estimate mean dynamics, as

in the work of Dew and Ansari (2018). Second, while recent

work by Yang et al. (2016) appears similar to ours in the use of

collections of GPs, they model observed variables using GPs.

In contrast, we model latent individual-level model parameters

via GPs. Because the quantities of interest in our work are

latent, we must impose more restrictions than Yang et al.

(2016) impose on the nature of the covariance. Specifically,

0.1 0.05

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

2

1

0

1

2

3

Period

Pa
ra

m
et

er
= .1 = .05 = .001

Figure 2. Examples drawing from a GPDH model with a fixed mean function.
Notes: Each panel uses a different value of k with a Matérn-3/2 kernel. The mean function is denoted by the bold solid line. We can see that as k! 0, the curves
more closely mirror the mean function.

5 These values are appropriate for the choice setting considered here, where the

utility is defined on a logit scale, the inputs (e.g., prices) are standardized, and

time intervals are discrete months (e.g., t ¼ 1; 2; 3; :::). If a larger amount of

heterogeneity is expected or the inputs are not standardized, then the tail

probability for the amount of heterogeneity, Z, can be adjusted by choosing

a higher value of Z0 or a larger tail probability threshold aZ. The assumed

values r0 ¼ 1 and ar ¼ :001 place prior mass away from small length-scales,

r, that are not properly identified: since the data are spaced evenly, small

length-scales are not distinguished from one another. If the data are not

integer-spaced, then the value of r0 can be adjusted to reflect the smallest

gap between inputs that is expected.
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we assume a parametric form for the covariance kernel, which

allows us to estimate the model without needing to directly

observe the quantity of interest. This assumption also lets us

mathematically link the GPDH method to existing heterogene-

ity specifications as special subcases of our specification.

Application 1: Dynamic Preference
Heterogeneity

We now apply our modeling framework to study the evolution

of individual-level preferences over time in a multinomial logit

choice model. We first estimate the model on synthetic data to

illustrate the relative merits of GPDH and the potential pitfalls

of not capturing dynamic heterogeneity. We then shift our

focus to real data of grocery store purchasing during the Great

Recession.

The GPDH Multinomial Logit Model

We consider discrete choice data yit, from individuals,

i ¼ 1; . . . ;N, who make choices over time t ¼ 1; . . . ;T from

a choice set of j ¼ 1; . . . ; J alternatives. The choices can be

explained in terms of a set of observed covariates xipjt, indexed

by p ¼ 1; . . . ;P, including brand intercepts. We assume a lin-

ear utility specification, with independent, standard extreme

value (EV) errors, and with parameters modeled by GPDH,

uijt ¼
XP

p¼1

bipðtÞ xipjt þ Eijt;Eijt*EVð0; 1Þ; ð7Þ

such that consumers choose the alternative with the highest

utility. For identification, we normalize the intercept of the

brand with the highest market share to zero. As we order brands

by market share, such normalization effectively forces Brand

1’s intercept to zero. This yields the standard softmax specifi-

cation for the logit choice probabilites in terms of the

individual-level time-varying intercepts and sensitivities in

bipðtÞ.6 We then model these individual-level functions using

the GPDH specificaton with a Matérn kernel:

bipðtÞ*GP

�
mpðtÞ; kpðt; t 0Þ

�
; where kpðt; t 0Þ ¼ k Maternðt; t 0;Zp; kp; npÞ:

ð8Þ

For both the simulations and the real data, we fix np ¼ 3=2.

We choose this value based on cross-validation using the real

data. However, we also found that, in general, predictive per-

formance was only marginally affected by the degree para-

meter. We include a brief discussion of kernel degree

selection in the Web Appendix.

Mean models. Our emphasis is on modeling the evolution of

heterogeneity around a given mean model. Therefore, and to

illustrate the flexibility of GPDH, we test four different mean

models in this application, corresponding to four common

specifications in the literature:

1. Random walk (RW) state space: The RW is the simplest

linear state space model that is used in the Kalman

filtering literature. Our implementation is given by

mpðtÞ ¼ mpðt� 1Þ þ zpt; zpt*Nð0; a2
pÞ: ð9Þ

2. Gaussian process: As in the work of Dew and Ansari

(2018), we can assume a GP as the population model:

mpðtÞ*GP

�
cp; k0pðt; t 0;Z0p; k0p; n0pÞ

�
: ð10Þ

We assume a constant mean cp and a Matérn kernel,

with the degree parameter n0p of this upper-level kernel

to be the same as in the GPDH kernel.7 This is the mean

model we assume in the simulations.

3. Autoregressive moving average time series: Time series

models are especially common in econometric applica-

tions and can easily be incorporated into our GPDH

framework. We test an ARMA(1) mean-model specifi-

cation, given by

mpðtÞ ¼ mpt ¼ a0p þ a1p mpt�1 þ a2p zpt�1

þ zpt; zpt*Nð0; t2

p
Þ: ð11Þ

4. Parametric: A theory-driven parametric model can also

serve as the mean model. In this case, one interesting

question is the degree to which the Great Recession is

associated with changes in consumers’ preference para-

meters. Thus, to illustrate how a parametric model

could be used in conjunction with GPDH, we use a

mean function given by the probability density function

of a generalized inverse gamma distribution:

mpðtÞ ¼ a0p þ a1p½ða2pÞa3p t�a3p�1expð�a2p=tÞ=Gða3pÞ�;
ð12Þ

with a2; a3>0. This parametric mean function allows

for a unimodal pattern, with different pre- and postpeak

function asymptotes, thus allowing us to isolate the

impact of the recession.

For each of these, we subsequently denote the collection of

parameters of the mean model generically as a. Note that a
varies across different mean models.

Extensions. There are many possible extensions and alternatives

to the utility and mean-model specifications that can incorpo-

rate other potentially desirable features alongside dynamic het-

erogeneity, depending on the available data and choice context.

For instance, if the researcher has access to a set of potential

6 Correlated Gaussian errors could also be used here, leading to a variant of the

multinomial probit model. We favor logit choice probabilities for

computational convenience.

7 This is merely a simplifying assumption; there is no theory-based reason to

fix both to have the same smoothness.
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drivers of shifts in preferences, such as individual-level events

like job loss or changes in income, or market-level events like

an indicator for the Great Recession, these can be incorporated

directly into the mean model. Specifically, with these drivers

denoted generically as zit, an additive linear specification could

be used, such that

bipðtÞ*GP

�
g
0

pzit þ mpðtÞ; kðt; t 0;fpÞ
�
; ð13Þ

where gp captures the expected effect of these drivers on pre-

ferences. In our choice-modeling application, we prefer to esti-

mate the effect of the Great Recession nonparametrically,

through a flexible mean function, and we do not have other

covariates available to include. However, we include a simulated

example of using such parametric drivers in the Web Appendix.

A second important consideration in many choice modeling

contexts is endogeneity, particularly price endogeneity.

Although in this work we focus only on the modeling of het-

erogeneity, the GPDH specification can be used in conjunction

with methods for controlling for endogeneity. For instance, in

the case of price endogeneity, the two-stage control function

method of Petrin and Train (2010) or the semiparametric

approach of Li and Ansari (2014) could be seamlessly incor-

porated into the utility specification in Equation 7, together

with an additional equation for the price-setting process.

Estimation. We estimate all variants of our GPDH logit model

via HMC, using the NUTS algorithm. Specifically, we jointly

sample all model parameters, including the individual-level

functions, the shared mean function, and the hyperparameters.

For the parameters of the mean model, we use weakly infor-

mative priors. The joint density for the full model is given by

pðy; b; m; a;fjXÞ ¼
YM
m¼1

p
�

ymjXm; bimpðtmÞ
� �P

p¼1

�

�
YI

i¼1

YP

p¼1

p
�
bipðtÞjmpðtÞ;fp

�
p
�
mpðtÞjap

�
pðfpÞ pðapÞ;

ð14Þ

where m ¼ 1; . . . ;M indexes observations, ym is the choice, tm
is the time period, and im is the individual associated with the

m-th observation. The matrix Xm contains the price and fea-

ture/display variables across all brands. We standardized the

variables over the calibration data and report standardized

results below. We ran the sampler for 400 iterations (200

warmup) and measured convergence through the R̂ statistic

(Gelman and Rubin 1992). In all cases, we achieved R̂ � 1.

We include more estimation details and discuss computation

time in the Web Appendix. The Web Appendix also contains

the Stan code to implement the model.

Simulations

In this section, we briefly describe a simulation exercise that

illustrates the benefits of modeling dynamic heterogeneity. In

the Web Appendix, we include additional simulations to help

understand the shrinkage properties and the computational

complexity of GPDH.

To understand the benefits of capturing dynamic heteroge-

neity with the GPDH model and the potential limitations of

competing approaches, we simulate multiple sets of choice

data from the GPDH multinomial logit with a GP mean

model. We then estimate the following three models on each

of the data sets: (1) the true model (GPDH logit with GP

mean); (2) an FO model that uses the GP mean model, but

with static heterogeneity; and (3) an independent periods (IP)

mixed logit specification that estimates a mixed logit model in

each period, with only the variance of the random coefficients

shared across periods, which therefore does not directly allow

for within-individual shrinkage across time. By simulating

data with GPDH, we ensure the presence of dynamic hetero-

geneity. Moreover, by assuming a GP mean as the true data-

generating process, we nest both the FO and IP specifications

as limiting cases.8

Two key results emerge from these choice model simula-

tions. First, by sharing information both within and across indi-

viduals, GPDH yields highly efficient estimates, relative to

models that assume independence across time periods. By effi-

cient, we mean small credible intervals, while still recovering

the true curve. We illustrate this in Figure 3, which shows

examples of true individual-level curves and their recovery

by the three specifications. As expected, GPDH correctly

recovers the true curves with a reasonable amount of precision,

as shown by the 95% credible intervals, relative to the curves

recovered by the IP model. Under IP, there is no intertemporal

sharing of information, leading to estimates that are jagged and

with much wider credible intervals. Finally, under FO, the

recovered curves are simply wrong: since the FO model

assumes that individuals are always at a fixed distance from

the mean trajectory, the interesting patterns of individual-level

variation are missed.

The second key result is that, if dynamic heterogeneity

exists in the data but static heterogeneity is assumed as in the

FO model, the population-level estimates under FO are biased

toward zero. This is the case even when the true data-

generating mean model is used in the FO model, as it is in our

simulations. In Figure 4, Panel A, we illustrate this bias for a

single simulated data set, plotting the recovered marginal dis-

tribution of the point estimates of the coefficients at different

points in time. We can see that the posterior median as recov-

ered by FO is always biased toward zero, and that the estimated

distribution of effects has substantially less variation than the

truth. In Figure 4, Panel B, we show the same result, but from

172 repeated simulations, where we varied the Z parameter of

the true GPDH data-generating process. For each simulated

8 The IP specification is equivalent to the case where the length-scales of the

GP mean model and the GPDH heterogeneity specification go to zero,

implying no cross-period correlations for either the mean or the

individual-level trajectories.

62 Journal of Marketing Research 57(1)



Person 1 Person 2 Person 3

6

4

2

0

2

6

4

2

0

2

6

4

2

0

2

M
od el: IP

M
o del:FO

5 10 15 20 5 10 15 20 5 10 15 20

Time

Pr
ic

e
C

oe
ffi

ci
en

t
M

o del:G
PD

H

Figure 3. Illustrative examples of true individual-level curves and their recovery.
Notes: The columns show plots of three individuals’ true price parameters (black, dot-dash), simulated from the GPDH model, relative to the (true) simulated
population mean trajectory (gray, solid). The rows show the estimated curves (color, dashed) for those same three individuals for each of the three specifications.
In the first row, the GPDH recovery is accurate and precise, leveraging the inter- and intra-individual pooling of information to yield reasonable error bars. In the
second row, using an IP assumption, the estimated curves are jagged and the error bars are large, reflecting no smoothing or intertemporal information sharing. In
the last row, using the FO assumption, the curves have narrow error bars but are wrong, each one reflecting the shape of the (estimated) population mean.
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Figure 4. Simulated data set.
Notes: In Panel A, the box plots show the distribution of the individual-level effects in specific periods, evaluated at four evenly spaced time periods. Panel B shows
the MAPE of the recovery of the population mean dynamics across the two models for the “price” coefficient. The truncation at MAPE of 1.00 omits 16
observations out of 172 simulations from the plot.
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data set, we again estimated both GPDH and FO heterogeneity

specifications around the same (true) mean model. Then, we

computed the mean absolute percentage error in recovering the

true population mean. We see that the error is higher in the FO

model and increases with Z, which represents the magnitude of

dynamic heterogeneity in the data-generating process. Taken

together, these simulations suggest that the popular approach of

assuming static heterogeneity around dynamic mean models

may lead to biased estimates of the population mean, thereby

distorting managerial decisions.

Consumer Packaged Goods in the Great Recession

We now turn our attention to modeling real choices. Specifi-

cally, we model brand choice in the IRI CPG panel data, from

January 1, 2006, to December 31, 2011 (Bronnenberg, Kruger,

and Mela 2008). We chose this span because it includes the

Great Recession, which, according to the National Bureau of

Economic Research, began in December 2007 and ended in

June 2009 (Business Cycle Dating Committee, National

Bureau of Economic Research 2010). Thus, analyzing this time

period has the potential to yield purchasing dynamics of inter-

est to both economists and managers. Specifically, we study the

evolution of consumers’ individual-level brand preferences,

price sensitivities, and feature/display sensitivities across six

different product categories: peanut butter, coffee, potato chips,

laundry detergent, tissues, and toilet paper. We model the time

variation at the monthly level. We retain all panelists who spent

at least five times during the data period and save the last four

months of data for holdout validation. Summary statistics for

the categories are displayed in Table 1.

Case study: Preferences for tissues. We focus this analysis on the

tissues category and one model: the GPDH logit model with an

ARMA mean model. We use this specific example to illustrate

the output and insights about dynamic heterogeneity that can be

generated from a GPDH specification. The tissues category, in

particular, generates interesting patterns of dynamic heterogene-

ity, and we use the ARMA mean model here as it tended to

perform the best among all mean models studied. We defer a

discussion of the results across all categories to the next section.

We start with the posterior estimates for the mean model

mpðtÞ. Figure 5, Panel A, shows these estimates for tissues. The

five plots show obvious monthly dynamics. On average, the

intercepts for Brands 2 and 3 tended to move in opposite direc-

tions, while the intercept for Brand 4 appears to track that of

Brand 2 to some degree. These intercept dynamics are relative

Table 1. Summary Statistics for CPG Data, by Category.

Category Brands Number of People
Total

Purchases Avg. Months Per Person Avg. Purchases Per Person Price Mean (SD) % Ft/Dsp

Chips 4 1,552 36,152 28.29 45.45 4.12 (.79) 96
Coffee 5 912 14,298 21.73 32.31 5.38 (2.19) 91
Detergent 6 1,117 16,784 19.96 24.70 1.20 (.78) 90
Peanut butter 5 1,085 16,212 19.41 25.37 1.95 (.46) 86
Tissues 4 979 15,005 22.26 34.02 1.59 (2.79) 69
Toilet paper 6 1,512 26,958 24.03 34.23 .61 (.17) 83

Notes: % Ft/Dsp ¼ percentage of observations in which there was at least one brand featured or displayed.
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Figure 5. Mean model for tissues category.
Notes: The last four periods (months) are forecasts. Ft/Dsp ¼ Feature/Display coefficient.
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to the normalized intercept of Brand 1. Both price sensitivity

and feature/display parameters also exhibit some monthly dips

and spikes.

While the mean patterns are certainly interesting, the pri-

mary focus of this paper is on capturing how individuals chan-

ged relative to those mean trends. In Figure 5, Panel B, we

show the difference between the individual-level curves and

the estimated mean model, Diff ipðtÞ ¼ b̂ipðtÞ � m̂pðtÞ, for a

few individuals who spent consistently throughout the data.9

From this, we can see that while some individuals followed the

mean trajectory, resulting in flat difference curves, others

moved substantially relative to the mean function. Capturing

this movement is the goal of GPDH.

The nature of the individual-level deviations is determined

by the estimated hyperparameters, Zp and kp. As the amplitude

Zp grows, the individual-level curves are allowed to spread

further from the mean. As kp grows, the individual-level curves

become less smooth. For the tissues category, the estimated

posterior mean GPDH hyperparameters imply that the fea-

ture/display coefficient has a low degree of heterogeneity,

reflected in its low Z of 2.98.10 The feature/display coefficient

also bears the closest resemblance to the FO assumption, with

k ¼ :01. The price coefficient has a relatively large degree of

heterogeneity, with Z ¼ 6:943, and the deviations from the

mean are relatively smooth, with k ¼ :021. Brand 4 exhibits

the least smooth variation, with the highest k value, .068. These

effects are also evident from Figure 5.11

We now zero in on a few interesting cases of individual-

level evolution that highlight the nuanced insights made pos-

sible by considering dynamic heterogeneity. We do this in

Figure 6, by focusing on a single parameter, the Brand 2
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Figure 6. Individual-level dynamic heterogeneity in the tissues category.
Notes: Panel A shows a sample of interesting individual-level curves, overlaid on the estimated mean model (in bold). Specifically, we isolate individuals whose
curves converge toward the population mean, cross over the population mean, and diverge from the population mean. Panel B shows the difference between
those same individual-level curves and the mean model, more clearly illustrating these changes.

9 We define consistent purchasing by dividing the data span into four parts:

months 1–18, 19–36, 37–54, 55–72. A consistent purchaser is one who spent

during each of these periods. Selecting individuals in this way is important

because the GPDH model exhibits mean reversion in periods where a customer

does not make purchases. By selecting individuals who spent throughout the

span of the data, we ensure that the patterns in this figure reflect true dynamics

and not mean reversion. The tissues category had 212 consistent spenders.

10 The Z parameter depends on the scale of the variables: since price and

feature/display are standardized (mean 0, variance 1), Z can be compared

across them but cannot necessarily be compared with the intercept parameters.
11 To contextualize these values of k and demonstrate how different values of k
shape individual-level curves, we refer readers back to Figure 2.
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intercept, which captures the intrinsic preferences for that

brand, relative to the baseline, Brand 1. We showcase individ-

uals who spent consistently and whose curves exhibit three

interesting patterns:12

� Converging: In the leftmost plot in Panel A of Figure 6,

we plot a set of individual curves that converge toward

the population mean. These customers started in one

extreme of the distribution for the Brand 2 intercept, but

by the end of the observation window, they were in the

middle of the distribution. Under the FO model, these

individuals would be estimated as being moderately

above or below the population mean, which is true only

in the middle of the observation window and does not

reflect current or expected future behavior.

� Crossover: In the center plot in Panel A of Figure 6, we

plot a set of customer curves that cross over the popu-

lation mean. That is, these individuals started out liking/

disliking Brand 2 (relative to others) and moved to dis-

liking/liking (respectively) by the end of the observa-

tion. Under the FO model, these individuals would be

classified as falling near the population mean; in fact,

they are perhaps the least average consumers, from a

marketing research perspective, as they reflect a strong

change in preferences.

� Diverging: In the rightmost plot in Panel A of Figure 6,

we plot individual curves that diverge away from the

population mean. These customers started out relatively

average in their tastes for Brand 2 but moved to the

extremes of the distribution over time. Under the FO

model, they would be estimated as being moderately

above or below the population mean, which is only true

in the middle of the observation window, and again does

not reflect current or expected future behavior.

Model fit. We now focus on the results across all six categories

to make some generalizations. The key result is that dynamic

heterogeneity is pervasive across the six categories. On com-

paring the FO model to our dynamic heterogeneity model, we

find that GPDH fits the data better across all metrics, both in

the calibration data and in forecasting tasks, including on

metrics that penalize model complexity. We include detailed

definitions of these statistics, together with the full set of fit

statistics and Bayesian measures such as the Watanabe–Akaike

information criterion (WAIC), in the Web Appendix. In Fig-

ure 7, we plot a subset of these measures, including in-sample

and forecast sensitivity, specificity, and F1 (the harmonic mean

of precision and recall), expressed as the lift from using GPDH

versus static heterogeneity, across all mean models and cate-

gories. The superior fit of GPDH across nearly all of these

metrics, both in Figure 7 (lift > 0) and in the Web Appendix,

strongly supports our claim that dynamic heterogeneity is pres-

ent, even in relatively simple panel data sets like grocery store

purchases.

Parameter estimates and attenuation bias. The hyperparameters

of GPDH capture both the magnitude of dynamic heterogeneity

for a given parameter, and how much within-individual
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Figure 7. Lift from using GPDH.
Notes: This figure shows the lift from using GPDH over static heterogeneity (i.e., FO) in in-sample and forecast fit statistics in all categories (panels), for our four
population mean specifications (x-axis), both in-sample (solid lines) and forecasting ahead four months (dotted lines) using three measures of fit: micro-averaged
sensitivity (dark green circles) and specificity (red triangles), and macro-averaged F1 (light blue squares), which is the harmonic mean of precision and recall. A lift
greater than zero means that GPDH is performing better than FO on the given fit measure. For more details about these statistics, see the Web Appendix.

12 See note 9 for our definition of a consistent purchaser and the rationale for

restricting the sample in this way.
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variation there is, over time. They also allow us to assess the

degree by which individual-level trajectories differ from the

FO restriction. Across categories, we find that the magnitude

of dynamic heterogeneity, Z, is typically large, especially for

brand intercepts and price sensitivity: for intercept parameters,

the mean Z is 2 (SD ¼ .64), while for price, the mean Z is 2.23

(SD ¼ 2.38). For feature/display, the mean Z is .29 (SD ¼
.11).13 Moreover, GPDH soundly rejects the FO model: the

distribution across all categories and coefficients of k, the

inverse length-scale, is centered away from zero, with a mean

k of .03 (SD¼ .02), and with some values as high as k ¼ :09.14

We found in our simulations that not accounting for

dynamic heterogeneity can lead to attenuation bias both in the

mean-model estimates and in the overall extent of heterogene-

ity. We also find empirical evidence of the bias in our real data.

Specifically, we find that the empirical standard deviation of

individual-level parameters within a given time period is lower

when using a FO model than when using GPDH in 75% of

cases, with a maximum difference (GPDH SD minus FO SD)

of .244 and a minimum difference of only �.034. These results

indicate a robust and often substantial downward bias in the

spread of FO estimates versus those from GPDH.

Moreover, when we contrast the mean curves recovered

from a GPDH specification with those from the FO specifica-

tion, we see the FO mean curves are biased toward zero. To

illustrate this, we develop what we call the signed relative

difference (SRD) statistic:

SRDp ¼
1

T

XT

t¼1

sign½m̂GPDH
p ðtÞ� �

m̂GPDH
p ðtÞ � m̂

FO

p
ðtÞ

1þ jm̂GPDH
p ðtÞj

; ð15Þ

where m̂GPDH
p ðtÞ is the estimated value of the mean model at

time t under the GPDH specification, m̂FO
p ðtÞ is the estimated

value of the mean model at time t under a FO (static) hetero-

geneity assumption, and signðxÞ ¼ 1 if x � 0 and �1 if x<0.

This statistic will always be positive when m̂GPDH
p ðtÞ is farther

from zero than m̂FO
p ðtÞ is. Moreover, its magnitude reflects how

much farther m̂GPDH
p ðtÞ is from zero than m̂FO

p ðtÞ is, on average,

on a relative basis. In Figure 8, we plot the estimated SRDs, as a

function of Z, the magnitude of dynamic heterogeneity. From

this, we see first that all but one of the SRD statistics are

positive, across all categories and parameters, lending strong

empirical support to an attenuation bias in mean parameter

estimates when static heterogeneity is assumed around a

dynamic mean model. Moreover, we argued previously that

as the magnitude of dynamic heterogeneity (Z) grows, the

attenuation bias worsens. The upward trend in Figure 8 is con-

sistent with this prediction.

Individual-level elasticities. Accounting for dynamic heterogeneity

is important for accurately computing decision-relevant quan-

tities, including time-varying price elasticities. By both correct-

ing for the attenuation bias and estimating intra-individual

dynamics, the individual-level decision variables inferred from

GPDH may be dramatically different than those based on a

static heterogeneity specification. To illustrate this, we con-

sider own price elasticity of demand across static and dynamic

heterogeneity specifications. For each observation in our data,

for each brand b, we compute the price elasticity using the

standard multinomial logit formula, xibtm ¼ b̂
P

i ðtÞ�
Priceibtm � ½1� pibtm�; where b̂

P

i ðtÞ is the estimated posterior

mean of the price parameter for person i at time t, and pibtm is

the probability that person i chooses brand b at time t, observa-

tion m, under the model. For individuals with multiple obser-

vations per time period, we average the elasticities, yielding a

final elasticity estimate, �xibt. We compute the elasticities for

both of the models.

First, we consider an illustrative case of a tissues consumer,

selected to showcase the differences in elasticities estimated by

dynamic versus static heterogeneity. In Figure 9, we present

two sets of plots: In Panel A, we show the same consumer’s

choice parameters under both dynamic (GPDH) and static (FO)

heterogeneity assumptions. In Panel B, we show the implied

elasticities over time, for all periods in which the consumer was

active.

Comparing GPDH to FO heterogeneity in Figure 9, Panel

A, we see two things: First, the consumer’s brand intercepts

deviated substantially from the pattern implied by FO,

because of individual-level dynamics. This effect is especially

interesting for Brand 2, where the consumer went from neg-

ative to positive. Second, we see that the price curve is sub-

stantially underestimated using FO, which is likely driven by
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Figure 8. Estimated SRDs as a function of the posterior mean esti-
mate of the hyperparameter Z.
Notes: A positive SRD indicates that the mean function estimated using the FO
assumption is closer to zero than when using GPDH. The magnitude of SRD
indicates how different these values are, with a higher SRD indicating a bigger
standardized difference between FO and GPDH. We expect the attenuation
bias to grow as the magnitude of dynamic heterogeneity (Z) grows; this is
reflected in the increasing SRD statistics. One outlier with Z>7 is omitted to
aid visualization.

13 It is difficult to directly compare Z across coefficients, as it is not invariant

to the scaling of the predictors: brand intercepts are binary, whereas the other

features are standardized (mean 0, variance 1).
14 We report all posterior mean estimates for the hyperparameters in the Web

Appendix.
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the attenuation bias. Taken together, these effects produce

two effects in the elasticities: First, in almost all cases, the

price elasticity is underestimated by roughly 50%. Second, we

see the brand intercept dynamics spill over into the price

elasticities, with different patterns implied, especially for

Brands 1 and 2.

This example demonstrates why we expect to see differ-

ences between decision variables under dynamic versus sta-

tic heterogeneity assumptions. Such differences in

elasticities are not limited to special cases. In fact, they are

widespread across all categories. To assess these differences

more generally, we compute the percentage difference in

elasticities from assuming static versus dynamic heteroge-

neity: PDibt ¼ ð�x
GPDH

ibt � �x
FO

ibt Þ=�x
GPDH

ibt : We present summary

statistics for the distribution of PDibt across individuals,

brands, and time periods in Table 2. We can see that, on

average, individual-level elasticities are underestimated by

using static instead of dynamic heterogeneity specifications.

Moreover, the tails on the distribution are large, indicating

that, for some people, the difference in estimated price

elasticity between static and dynamic heterogeneity specifi-

cations is substantial.

The Great Recession. In the previous sections, we showed the

applicability of GPDH to targeting and pricing. In this section,

we show how GPDH can also be used by researchers to nonpar-

ametrically understand the impact of events, like the Great Reces-

sion, on individual-level consumer preferences. In particular, we

use our GPDH estimates to understand the changes in individual

and market-level preferences during the Great Recession.

Researchers have documented how price sensitivity within cate-

gories varies with business cycles (Gordon, Avi, and Li 2013)

and, more generally, how CPG preferences shifted, on average,

during the Great Recession (Cha, Chintagunta, and Dhar 2015).

Similar to this previous research, we can use the individual-level

GPDH estimates to compute how the average price elasticity of

demand changed over time during the recession. We, too, find

differences in the effects of the recession on average own price

elasticities across the categories, and we include a full discussion

of average price elasticities over time in the Web Appendix.

Beyond mean-level analyses, a key benefit of GPDH is that

we can also analyze individual-level parameter trajectories. By

studying how individuals’ curves deviated from the mean tra-

jectory during the Great Recession, we can nonparametrically

analyze how preferences appear to have changed during that

period. To illustrate how GPDH individual-level parameter

trajectories can be used in this fashion, we created two metrics,

related to the timing and impact of the recession:

1. Individual-level maximal rates of change: The first

metric aims to understand when preferences changed

most rapidly over the course of the data period. To

measure this, we again consider the individual-level

Table 2. Summary Statistics for the Distribution of PDibt, Relative to
the GPDH Estimate, Across People, Brands, and Time Periods.

Category Mean SD 5% 25% 50% 75% 95%

Chips 3.31 4.18 �3.43 1.08 3.35 5.75 9.72
Coffee 16.89 9.59 1.33 10.82 17.42 22.74 30.59
Peanut butter 10.58 5.24 2.20 7.31 10.47 13.76 19.80
Detergent 12.00 4.30 4.47 10.21 12.11 14.06 18.19
Tissues 6.48 4.60 �.96 3.80 6.29 9.56 14.42
Toilet paper 9.00 4.80 2.53 5.82 8.22 11.38 18.04

BBrand 2 Brand 3 Brand 4 Price

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

−15

−10

−5

0

−4

−3

−2

−1

0

−4

−3

−2

−1

0

−2

0

2

Month

In
di

vi
du

al
-L

ev
el

 P
ar

am
et

er

Heterogeneity
FO

GPDH

Brand 1 Brand 2 Brand 3 Brand 4

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
−6

−4

−2

−4

−3

−2

−1

−5

−4

−3

−2

−1

−6

−4

−2

Month

O
w

n 
Pr

ic
e 

El
as

tic
ity

Heterogeneity
FO

GPDH

Figure 9. Illustrative case of a tissues consumer.
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difference estimates Diff ipðtÞ ¼ b̂ipðtÞ � m̂pðtÞ, which

capture how each individual changed relative to the

population over time, and which are displayed for the

tissues category in Figure 5, Panel B. To isolate periods

in which individuals changed most dramatically rela-

tive to the population, we then consider the derivative

of Diff ip, which we approximate using the slope of

locally linear regressions. Finally, for each consumer,

in each category, we select the period in which the

absolute value of this numeric derivative is highest,

retaining only those cases that exhibited substantial var-

iation (estimated slope > .05). Mathematically, this

procedure approximates finding

t	ip ¼ arg max
t

d

dt
Diff ipðtÞ ¼ arg max

t

d

dt

h
b̂ipðtÞ � m̂pðtÞ

i
:

ð16Þ

The distribution of the timing of these maximal rates of

change then serves as a metric by which we can assess

the timing of distributional shifts in preferences.

2. Timing of crossovers: Our second metric isolates the

timing of crossovers; that is, the periods in which

individual-level curves crossed over the mean curve

by either going from the bottom part (half) of the dis-

tribution to the top part (half) or vice versa.15 The dis-

tribution of the timings of crossovers then allows us to

assess the periods in which preferences appear to have

been changing in interesting ways.

Using these two metrics, we find an apparent impact of the

recession on individual-level dynamics and the distribution of

heterogeneity that differs by category. In Figure 10, Panel A,

for instance, we plot the result for the chips category, where we

see striking peaks in both metrics associated with the beginning

and the end of the recession. Similarly, we find evidence of

such peaks in the tissues category. In other categories, most

notably coffee, we find no evidence of a recession-era effect, as

shown in Figure 10, Panel B. In fact, in the coffee category, as

well as in the detergent category, the most rapid changes in the

distribution of parameters appears to be concentrated toward

the ends of the observation window.16 While understanding the

reasons behind these cross-category effects is beyond the scope
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Figure 10. Curve timing results showing the impact of the Great Recession.
Notes: In each panel, at left is the distribution of the timings of maximal slopes for individual-level curves, with the recession period bounded by the dashed lines. At
right is the distribution of the timings of crossovers, again with the recession period bounded by dashed lines.

15 In the case of symmetric marginal distributions, which we often find,

“bottom part” is equivalent to “bottom half.”
16 We include the full results for curve timings across all categories in the Web

Appendix.
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of the current work, these findings illustrate the types of anal-

yses enabled by our dynamic heterogeneity framework.

Application 2: Dynamic Topic Heterogeneity

Although heterogeneity in marketing has most often been dis-

cussed in the context of consumer preferences, GPDH is widely

applicable. In this section, we apply it to a different domain:

modeling the product-level evolution of review content. In

particular, we fuse the latent Dirichlet allocation (LDA) topic

model (Blei, Ng, and Jordan 2003) with GPDH to capture

dynamic heterogeneity in the evolution of reviews for different

products. We apply our model on a data set of time-stamped

reviews for tablet computers to address questions such as (1)

how the topics used to discuss tablets have changed over time,

(2) how the discourse about a focal product is affected by the

introduction of new products in the marketplace, and (3) how

deviations in product-level topic trajectories reflect the success

or failure of the product. Our focus here is on illustrating how

our framework can be used across different types of data, con-

texts, and models, and we therefore do not dwell at great length

on the substantive conclusions in this application.

Latent Dirichlet Allocation with GPDH (LDA-GPDH)

Our model extends the standard LDA model of Blei, Ng, and

Jordan (2003) to the case where documents pertaining to differ-

ent groups (e.g., products) evolve over time. In particular, we

define a document as the review content of a specific product in a

given calendar time period. We model the evolution of the

reviews of these products, indexed i ¼ 1; . . . ;N, in calendar

time, t ¼ 1; . . . ;T. Products are introduced at different times

within those T periods, with each product’s introduction time

denoted by tmin
i . We assume that there are D topics that summar-

ize the entire discourse across all brands. Topics are probability

distributions over words and capture groups of words that com-

monly co-occur in the reviews within a time period. We assume

that the topics themselves remain static, but, over time, the

topics emphasized in the reviews of a given product i may

change. Specifically, we posit the following generative model:

� Generate each topic d ¼ 1; . . . ;D from a Dirichlet dis-

tribution, nd*DirichletðaÞ, where ndv is the probability

of seeing word v under topic d.

� For each topic d ¼ 1; . . . ;D� 1, draw the mean rate of

seeing that topic over time using a GP with two length-

scales of variation and a periodic component:

mdðtÞ*GPð0; k Long þ k Short þ k PerÞ:
This specification mirrors the calendar time structure

used by Dew and Ansari (2018). It captures momentary

fluctuations in the prevalence of a given topic, as well as

longer-run trends and cyclical variation. We use the

squared exponential kernel, which is the limiting case

of the Matérn kernel as n!1, for the long-run kLong

and short-run kShort kernels. For the periodic kernel, we

use the periodic variant of the squared exponential ker-

nel, given by

kPerðt; t 0;o;Z; kÞ ¼ Z2exp �ksin2½pðt� t 0Þ2=o�
n o

;

with a cycle length, o ¼ 12, to capture monthly cyclical-

ity. The mean rate for the D-th topic is normalized to zero

for identification. Note that any of the population models

described earlier could be used here; we choose the GP

mean model both to illustrate the flexibility of the mean

specification and to capture short-term and periodic spikes

in chatter at certain times of the year (e.g., holidays).

� For each product i ¼ 1; . . . ;N, and for each time period

t ¼ 1; . . . ;T:

– For each topic d ¼ 1; . . . ;D� 1, using a Matérn-3/2

kernel, kdð:Þ, draw the unnormalized topic weights

for product i using GPDH to capture product-level

departures from population-level trends:

uidðtÞ*GP

�
mdðtÞ; kdðt; t 0;Zd; kdÞ

�
:

– Set the D-th topic unnormalized weight to zero:

uiD ¼ 0.

– Compute the normalized topic assignment

probabilities:

bidðtÞ ¼
exp½uidðtÞ�XD

j¼1

exp½uijðtÞ�
:

– For each word token m ¼ 1; . . . ;Mit in reviews of

product i in period t, draw a topic assignment for that

word: aitm*Categoricalð bi1; . . . ; biDÞ:
– Draw the actual word token from the assigned

topic’s word weights: witm*Categoricalðnaitm
Þ:

In some periods, a given product i may not have any

reviews. For that period, the parameters are interpolated

or extrapolated.

Comparison with Existing Models

The most common dynamic topic model is that of Blei and Laff-

erty (2006), which is often referred to simply as the dynamic topic

model. In this model the topics evolve over time, but documents

are static, and heterogeneity is not accounted for. The focus of this

model is solely on modeling the dynamics of content within one

group of documents. The LDA-GPDH model is distinct from this

classic dynamic topic model in that it focuses on the dynamic

evolution ofcontent formultiple groups ofdocuments butassumes

that topics are static. The LDA-GPDH framework is thus suitable

for the case where new documents are added within each group

over time. In the case of reviews, we consider the unit of analysis a

single product, where new reviews are continually added over the

life span of the product. For other applications, like the modeling

of scientific documents within a collection (e.g., theoretical
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physics papers), considered by Blei and Lafferty (2006), the doc-

uments are static. However, the words that are used in documents

may change, requiring the evolution of the topics themselves. In

other words, LDA-GPDH captures heterogeneity in discourse

between groups of documents over time, while the dynamic topic

model captures the evolution of content in a single group.

A simpler approach to model the evolution of reviews would

be to apply the basic LDA model to documents defined as the

composite of all the reviews posted for a given product in a

given month. Unlike LDA-GPDH, such an approach treats the

reviews of a product as independent across time periods, rather

than assuming some consistency of topics within products over

time, thus disregarding the primary unit of analysis (the prod-

uct). As a result, the topics identified by the two approaches are

substantially different, with LDA-GPDH finding topics that are

consistent within products. For instance, in the case of tablet

computers, LDA-GPDH finds many more topics associated

with specific brands, while independent LDA finds more topics

associated with usage and liking. Moreover, since GPDH

shares information across time periods, the topic evolutions

estimated using GPDH are much smoother, allowing research-

ers to better separate noise from true parameter dynamics.

Estimation

As in the choice modeling application, we estimate LDA-

GPDH using NUTS. As before, we jointly sample all model

parameters, including the individual-level function coeffi-

cients, the shared mean function, and the hyperparameters.

Unlike in the choice modeling application, LDA-GPDH has

discrete parameters, namely the topic assignments, which can-

not be sampled by NUTS. Hence, during estimation, we mar-

ginalize out the topic assignments, by computing

p
�

witm ¼ v j biðtÞ; n
�
¼
XD

d¼1

pðwitm ¼ v j aitm ¼ dÞ

p
�

aitm ¼ d j bidðtÞ
�
¼
XD

d¼1

ndv bidðtÞ;

where biðtÞ ¼
�
bi1ðtÞ; . . . ; biD�1ðtÞ

�
and n ¼ ðn1; . . . ; nDÞ.

With this marginalization, the joint distribution is given by

pðwj b; m; nÞ ¼
YN
i¼1

YT

t¼tmin
i

YMit

m¼1

p
�

witm j biðtÞ; n
�YD�1

d¼1

p
�

uidðtÞ j mdðtÞ;kd;Zd

�

�p
�
mdðtÞjk0d;Z0d

�
pðZd; kd;Z0d; k0dÞpðndÞ:

ð17Þ

As before, we run the sampler for 400 iterations (200 warmup).

Data

We apply our LDA-GPDH formulation to model the evolution

of reviews in a single product category: tablet computers. We

use the data from Wang, Mai, and Chiang (2013), which

contains the full set of reviews from Amazon for the tablet

computer category from September 2003 to July 2012.17 We

limit our sample to the 43-month span from January 2009 to

July 2012, which contains the bulk of the reviews (for context,

the first Apple iPad was released in April 2010). We further

restrict our sample to products that have at least 10 reviews. We

aggregate these reviews at the product-month level to form our

evolving document stream for each product. For the review

content, we follow standard text processing procedures: we

first stem the text and eliminate stop words. We then retain all

words appearing in at least 5% of observations, but not in more

than 75%, where observations are period (month)–product

pairs. Finally, we retain the 1,000 words with the highest aver-

age term frequency–inverse document frequency scores across

documents. This resulted in a data set of 2,686 observations

across 265 products.

We ran LDA-GPDH on this data using D ¼ 15 topics. We

selected the number of topics by running the standard LDA

model multiple times with different number of topics. We

found that 15 topics is the most that can be used before the

topics become redundant or difficult to interpret.

Aggregate Results

We start by describing the topics learned by the model, and

how their prevalence varies, on average, over time. In Table 3,

we show the 10 words with the highest posterior probabilities

for each topic. We see that LDA-GPDH identifies meaningful

topics that tend to fall into three broad categories: functional

topics, capturing aspects of how the products are used or func-

tion, especially Topics 1, 3, 7, 10, 12, 13, and 14; experiential

topics, capturing consumers’ experiences with their purchases,

especially Topic 5; and brand topics, discussing distinct brands

and products, especially Topics 2 (XOOM Android), 4 (ASUS

Transformer), 6 (Windows), 8 (Samsung Galaxy), 9 (Apple/

iOS), 11 (Amazon Kindle), and 15 (HP TouchPad). Note, how-

ever, that these distinctions are not always clear: Topic 10, for

instance, primarily discusses apps, reading, and downloads but

also has discussion of the Kindle; Topics 1 and 9 mention

Apple products but also functional words; and Topic 12 has

“archo,” which is the stemmed form of Archos, a tablet man-

ufacturer, in addition to multiple functional words.

While the topics are static, the prevalence with which they

are discussed changes. Figure 11 plots the mean model mdðtÞ for

a selection of topics, reflecting the degree to which those topics

are emphasized, relative to the baseline topic (Topic 15, HP

TouchPad). We also plot a normalized version, given by

mdðtÞ ¼
exp½mdðtÞ�XD

‘¼1

exp½m‘ðtÞ�
;

17 For a thorough overview of the raw data, see Wang, Mai, and Chiang (2013).
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which corresponds to the topic weights of the “average” product.

We can see in Figure 11 that Topic 5 (Experiential) remained the

predominant topic over time, for the average product. Other

topics waxed and waned in their prevalence. For instance, we

see the relatively recent emergence of Topic 10 (Reading),

reflecting the increasing prevalence of this use case in the mar-

ket. We see the sharp decline in discussion of netbooks and the

Windows operating system, reflecting the growing acceptance of

tablets as their own product class, with distinct uses from net-

books and personal computers. We also see the rise of the Apple

and Samsung topics around the times of their tablet introduc-

tions. While these market dynamics make intuitive sense, under-

standing how individual products evolved relative to these

trends is more interesting. We thus turn our attention to under-

stand product-level deviations from these mean trends, which

can be recovered from the GPDH specification.

Table 3. Summary of the LDA-GPDH model.

Topic Zd kd Terms with Highest Posterior Probabilities

1. Early Apple features .07 .09 devic, book, iphon, ipod, kindl, netbook, easi, flash, look, pdf
2. XOOM Android 2.25 .22 xoom, android, app, market, honeycomb, devic, rom, flash, googl, motorola
3. Netbooks 2.84 .33 screen, netbook, touch, keyboard, batteri, comput, lenovo, dell, upgrad, mode
4. ASUS Transformer 2.63 .21 asus, android, app, transform, thrive, acer, issu, playbook, keyboard, usb
5. Experiential .80 .09 screen, can, like, will, just, one, good, great, time, want
6. Windows 3.22 .10 window, X7, keyboard, need, devic, comput, slate, can, laptop, pen
7. Android apps 2.00 .16 android, market, input, devic, cobi, googl, download, flash, kyro, amazon
8. Samsung Galaxy 2.53 .36 app, tab, android, samsung, galaxi, devic, phone, X7, card, camera
9. Apple/ iOS 2.47 .13 io, appl, can, X2, app, devic, like, laptop, one, new
10. Reading 2.03 .32 app, one, book, read, download, kindl, love, bought, io, can
11. Kindle Fire 2.35 .07 fire, kindl, amazon, book, read, love, like, can, devic, great
12. Media playback 3.36 .10 archo, devic, android, app, video, player, music, firmwar, touch, file
13. Features and development .51 .06 develop, electron, audio, ad, charg, dollar, beauti, check, come, intern
14. Usage 2.56 .71 devic, app, will, io, amazon, one, screen, video, web, download
15. HP TouchPad – – touchpad, hp, app, android, price, os, great, devic, electron, mani

Notes: The table shows the GPDH hyperparameter estimates across the 14 unnormalized topics. Higher values of Zd reflect more spread around the mean
function, while higher values of kd reflect less smooth departures from the mean model, reflecting more brand-specific deviations from the mean trends. The final
column shows the top ten words characterizing each topic, selected by sorting posterior term probabilities.
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Figure 11. Mean model for selected topics.
Notes: Each plot shows the mdðtÞ and mdðtÞ functions for the selected topic. The solid line is mdðtÞ, corresponding to the scale on the left axis; the dashed line is
mdðtÞ, corresponding to the scale on the right axis. The x-axis is months.
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Dynamic Heterogeneity in Topic Weights

As in the choice application, GPDH in our topic model captures

individual-level departures from the mean patterns, reflecting

in this case product-specific discourse trajectories. The prop-

erties of those departures are captured by the two GPDH hyper-

parameters, which we present for each topic in Table 3. In

particular, we find that there is substantially less dynamic het-

erogeneity for Topics 1 and 5 than for the others. As can be

seen in the table, Topic 1 discusses fairly generic tablet-related

words, in addition to discussion of the iPhone and iPod. More-

over, as we saw in Figure 11, this topic sharply declined toward

the end of the observation window. An interpretation of these

patterns is that this topic captures comparisons to iPhones and

iPods, which were prevalent before tablets became main-

stream; after the popularization of the iPad, these topics were

no longer discussed, and thus there was minimal discussion

across all brands. Topic 5 captures fairly generic experiential

words, and so it is again not surprising that these words occur

somewhat more uniformly across brands than other topics.

Topics 6 and 12 have the most heterogeneity. Both of these

topics reflect somewhat technical language, as well as words

associated with niche brands in the tablet space (Archos, Win-

dows). Thus, a large degree of variation in discussion is to be

expected.

Market Structure Analysis

The key benefit of using GPDH in topic modeling is that we are

able to obtain product-specific topic trajectories: for a given

product, how did discourse for that product change, relative to

how discourse changed in general? These product-level

dynamics can shed light on market structure by examining

changes in the discourse for one product during time periods

in which potentially competing products were introduced. For

example, how did the introduction of Amazon’s Kindle Fire, a

highly anticipated Android tablet related to the popular Kindle

e-reader, change the discourse in the reviews of existing prod-

ucts? Were niche products affected differently than mainstream

products? Was the change in discourse in these products pri-

marily related to brands and products, or did it relate to the

functional aspects of the products, too? Answering each of

these questions requires understanding how the discourse sur-

rounding individual products changed over time.

In this analysis, we focus on the years 2011–2012, which is

toward the end of our observation window. During this time,

many next-generation products were introduced, including a

new generation of popular Android-based tablets as well as

Amazon’s Kindle Fire and two new versions of Apple’s iPad.

In particular, this period includes the introduction of Amazon’s

Kindle Fire tablet at the end of September 2011 (Period 33 in

our data) and the introduction of the short-lived “new iPad”

(iPad 3) in April 2012 (Period 40 in our data).18 To understand

how these introductions affected product-level chatter, and

what this may imply about market structure, we begin by con-

sidering two case studies before reporting results across

products.

Case study: Reviews of the iPad 2. Figure 12 shows several of the

dynamic topics identified for the iPad 2 (32 GB version). In

the figure, we highlight (the leftmost overlaid rectangle) the
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Figure 12. Dynamic topic weights for the iPad 2 (32 GB), estimated by GPDH, for six selected topics.
Notes: The iPad 2 was launched in March 2011. The orange (leftmost) overlaid rectangle marks the release of the Amazon Kindle Fire tablet, while the green
(rightmost) rectangle marks the release of the Apple iPad 3. We also plot the estimated mean probabilities for the topics.

18 The period of the release of a product and the period of its first review are

sometimes not the same, most often because products are reviewed before the

official release or because different versions of the same product have slightly

different release dates. We thus consider a three-month window around the

official release dates as the “release window” of a focal product.
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release window of the Kindle Fire and in green (the rightmost

rectangle) the release date of the iPad 3. The first thing of note

is the substantial dynamics present during the release of the

Kindle. We see that topic weights during that time shifted from

Reading to Experiential, as well as to topics about the Apple

brand and the iPad. There was also a notable uptick in chatter at

that time about Samsung products, reflecting the launch of a

new Samsung tablet simultaneous with the introduction of the

Kindle Fire, and an uptick in chatter about media playback.

After the release of the newer generation iPad 3, we also find

changes, this time in chatter about Apple/iOS, about competing

Android-based products (e.g., Asus products), and again about

reading.

These patterns reflect different aspects of the tablet market

structure. First, while the Kindle Fire was Android-based, it

appears to have attracted significant attention even among iPad

users, especially when reviews that focus on reading are con-

sidered. Previous versions of the Kindle were e-readers but not

full-fledged tablets. With the Kindle Fire, Amazon entered the

tablet market but retained its emphasis on reading. The ways in

which the iPad reviews changed during this period suggest that

this move did attract attention, with customers who previously

reviewed the iPad for its reading capacity largely vanishing

after the Kindle Fire’s introduction. The changes after the intro-

duction of the newest iPad also reveal aspects of the market

structure. The uptick in discussion of competing Android prod-

ucts and reading are consistent with a change in the customer

base after the new iPad release: customers who continued buy-

ing the older version are likely customers who were more price

sensitive or who were looking for a tablet with more basic

functionality. Thus, we see an increase in chatter about com-

peting but lower-priced brands, as well as a focus on a more

basic function (reading).

Case study: Reviews of the ASUS transformer. Figure 13 plots the

dynamics over the topics for the Asus Eee Pad Transformer (32

GB version). Immediately, we can see differences between this

and the iPad. First, there are clear FO style differences versus

the iPad example. For instance, the Asus brand topic is con-

sistently higher for the Asus Transformer’s reviews than it was

for the iPad’s reviews. However, there are also clear differ-

ences in the dynamics of the topic weights, and departures from

the mean-level trends, which are captured by the flexible

GPDH framework. For example, similar to the iPad, we also

see a rise in discussion of Experiential aspects over the prod-

uct’s life cycle, reflecting a shift from more functional descrip-

tions of the product to more experiential ones. In terms of

responses to product releases, the Asus topics appear to have

been substantially affected by the release of the new iPad, but

not as much by the release of the Kindle Fire. While there was a

noticeable spike in chatter about Reading after the release of

the Kindle Fire, it was short-lived. However, after the release of

the iPad 3, we see a huge bump in chatter about Apple and the

iPad, and a corresponding drop in chatter about the Asus brand.

Topic dynamics again reflect the tablet market structure. In

addition to the dynamics plotted in Figure 13, several other

topics are high toward the start of the Asus Transformer’s life

cycle, capturing different competing brands or products: Topic

2, about the Motorola XOOM and Android Honeycomb oper-

ating system, for instance, started out high. Similarly, Topic 3,

about netbooks and touchscreens, started out high, which is

especially relevant since the Transformer had an attachable

keyboard option. Likewise, Topic 6 (Windows) started out

high. Early reviewers emphasized comparisons with these

products, reflecting the market position of the Transformer as

a mix of these products. The lack of impact of the Kindle Fire’s

introduction, together with the seemingly large impact of the
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Figure 13. Dynamic topic weights for the Asus Eee Pad Transformer (32 GB), estimated by GPDH, for selected topics.
Notes: The Asus Eee Pad Transformer was launched in late April 2011. The orange (leftmost) overlaid rectangle is the release of the Amazon Kindle Fire tablet,
while the green (rightmost) rectangle is the release of the Apple iPad 3. We also plot the estimated mean probabilities for the topics.
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iPad’s introduction, also reflects aspects of the product’s use:

the Transformer was largely aimed at replacing laptops as a

mobile computing system and did not emphasize the reader

aspect as much. When the new iPad was released, it likely

attracted significant attention from this customer base, as

reflected in these changes in topics. Finally, the substantial but

short-lived spike in chatter about the Samsung Galaxy also

appears to reflect comparisons to that product upon its release,

but with no lasting impact, perhaps suggesting different user

bases.

Results across products. Finally, we consider patterns of product-

level topic evolution across all the products in our data set. Just

as in the choice-modeling application, where GPDH allowed us

to define new metrics to capture interesting dynamics during

the recession, we can also consider new metrics based on

dynamic heterogeneity for topic weights, to systematically

characterize product-level review dynamics. In particular, we

consider a question that was raised in our case studies: during

which periods of time did individual products exhibit the most

change in topics? To answer this, we consider the following

metric:

dit ¼
1

D

XD

d¼1

			 b̂idðtÞ � b̂idðt� 1Þ
			;

which reflects the average per period change (from t� 1 to t) in

the estimated product-specific topic weights, b̂idðtÞ. We find

that the shape of the empirical distribution of dit across i does

not change substantially with time. However, the positions of

individual products within that distribution vary considerably.

To better understand when products undergo the biggest

changes in topic weights, we look again at two focal periods:

the period after the Kindle Fire’s introduction (t ¼ 34) and the

period after the iPad 3’s introduction (t ¼ 40). Among the top

20 dit statistics for t ¼ 34, we find many references to e-reader

products, such as “Pandigital Planet Android 7-Inch Multime-

dia Tablet” and “Color eReader with Kindle.” In fact, we find

four Pandigital products among the top 20 dit statistics in that

period, indicating substantial competition between that brand

and the Kindle Fire. For t ¼ 40, we most notably find a variety

of previous iPad versions, which is intuitive, as the release of a

new version of the iPad likely changed the discourse about

previous versions. Although many of these results are intuitive,

this analysis highlights the types of analyses afforded by

dynamic, product-level topic trajectories, which can be esti-

mated by a GPDH specification.

Conclusion

We developed a novel methodology for capturing dynamic

heterogeneity in models of parametric evolution. Across two

applications of our GPDH framework to essential marketing

tasks, we showed the rich insights that come from modeling the

evolution of the distribution of cross-sectional heterogeneity.

In our first application, we illustrated the importance of

capturing dynamic heterogeneity in choice models with evol-

ving sensitivities, and the managerial and economic insights

uncovered by our GPDH specification. In our second applica-

tion, we showcased the wide applicability of GPDH by

employing it in a different context: a topic model capturing the

product-level evolution of review content. We applied this

model to reviews of tablet computers and used these product-

level topic trajectories to shed light on aspects of market

structure.

Both applications demonstrate the versatility of the GPDH

specification. As GPDH is a way of specifying heterogeneity

for the parameters of a focal likelihood, around a particular

mean model, it can be used with different likelihoods and

dynamic mean models of interest. In this work, we showcased

five distinct mean models, ranging from Kalman filter-like

state space models to time series specifications and multicom-

ponent GP models. As an extension, we also suggested how to

incorporate the drivers of dynamics within mean models,

although we did not have appropriate data to demonstrate that

use case. In addition, we discussed briefly how endogeneity

concerns can be handled via standard control function methods.

While we focused only on the benefits of dynamic heteroge-

neity and thus did not fully explore these extensions, they may

be important for researchers interested in adapting our frame-

work in other substantive contexts.

Our work has several limitations that suggest opportunities

for future research. First, especially in Application 1, we

observe existing customers only. As a result, we cannot rule

out the possibility that the observed patterns of heterogeneity

are driven by different customer lifetimes (i.e., left censoring).

However, the patterns of dynamics we uncover still correctly

reflect the changes that occur at a given point in calendar time,

regardless of the underlying source of those dynamics. More-

over, given the mature and common nature of the studied CPG

categories, we do not expect left censoring to be the primary

driver of our results. In addition, because of our emphasis on

the methodological contribution of GPDH, we did not fully

explore some of the interesting substantive phenomena that

were revealed by our GPDH specification. In particular, in

Application 1, we noted the prevalence of shifts in brand inter-

cepts versus price coefficients during the Great Recession, as

well as the heterogeneous impact of the recession on different

categories. In Application 2, we uncovered associations

between discourse and product life cycles. Understanding the

mechanisms behind these phenomena is beyond the scope of

this work but may be interesting topics for future research.

Finally, from a computational perspective, our implementation

of GPDH using MCMC methods is somewhat slow. Recent

advances in Bayesian inference, including variational methods

(e.g., Ansari, Li, and Zhang 2018), may prove valuable in

accelerating the computation time for these models.

Lastly, while we used GPDH in the context of dynamic

heterogeneity, our framework is generally applicable for mod-

eling collections of functions defined on any index, not just

time. Other use cases may include spatial modeling and func-

tional modeling of variables. As the modeling of both
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heterogeneity and dynamics is crucial to marketing, we hope

that GPDH will be used and extended for research across a

wide variety of domains.
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